The Spatial Relationship of DCT Coefficients Between a Block and Its Sub-blocks

IEEE TRANSACTIONS ON SIGNAL PROCESSING,
VOL. 50, NO. 5, MAY 2002

Jianmin Jiang and Guocan Feng

Speaker: Ming-Hsun Ko
Date: 2008/07/24
Outline

- Introduction
- Related work
- Problem Formulation
- Case of 1-D Signals
- Case of 2-D Signals
- Experimental results
- Conclusions
Introduction

• Popular digital images and videos
 – JPEG 、BMP
 – MPEG-1 2 4 7 、RMVB 、AVI

• Transferred in compressed format
 – discrete cosine transform (DCT)
Introduction

- MPEG (JPEG) Encode Flow

Spatial Domain

Frequency Domain

DCT

for each 8x8 block

量化

zigzag 排序

Huffman 011010...

Y

Cr

Cb

畫面(frame)

DPCM

DC

RLE

AC
Introduction

• DCT coefficients of block
 – directly obtained from its sub-blocks

• Corresponding coefficient matrix
 – linear combination

• Proposed algorithms ↔ existing methods.
 – computational complexity
 – significantly lower
Related work

- Abdel-Malek et al. 1996
 - detect oriented line features
 - variance of sliding window

- Shen et al. 1998
 - strength and orientation of edges
 - 20 times faster
Related work

• J. R. Hernandez et al. 2000
 – Watermarking
 – Gaussian distribution statistically model
 – Allows examination
Problem Formulation

- **Block of pixels B**
 - L*N rows
 - M*N columns

- **L*M Sub-blocks**
 - SB_{ij} size of N*N
 \[i = 0, 1, \ldots, L - 1 \]
 \[j = 0, 1, \ldots, M - 1 \]

Fig. 1. Schematic illustration of the problem to be solved.
Case of 1-D Signals

\[C(u) = \sqrt{\frac{2}{MN}} \alpha(u) \sum_{i=0}^{MN-1} x(i) \cos \left(\frac{(2i + 1)u\pi}{2MN} \right) \]

\((u = 0, 1, \ldots, MN - 1) \) (1)

and

\[C_P(u) = DCT(T_P) \]

\[= \sqrt{\frac{2}{N}} \alpha(u) \sum_{i=0}^{N-1} x(pN + i) \cos \left(\frac{(2i + 1)u\pi}{2N} \right) \]

\((p = 0, \ldots, M - 1, u = 0, \ldots, N - 1) \) (2)

where \(T_P = x(pN + i) \), and

\[\alpha(u) = \begin{cases} \sqrt{\frac{1}{2}}, & \text{for } u = 0 \\ 1, & \text{otherwise.} \end{cases} \]
Case of 1-D Signals

- block\([16*16]\) → sub-block\(4*[8*8]\)
Case of 2-D Signals

\[C_B(u, v) = \sqrt{\frac{4}{L^N \cdot M^N}} \alpha(u) \alpha(v) \sum_{i=0}^{L^N-1} \sum_{j=0}^{M^N-1} x(i, j) \]

\[\cdot \cos \left(\frac{(2i + 1)u\pi}{2LN} \right) \cos \left(\frac{(2j + 1)v\pi}{2MN} \right) \]

\[= \sqrt{\frac{2}{M^N}} \alpha(v) \sum_{j=0}^{M^N-1} \left(\sqrt{\frac{2}{L^N}} \alpha(u) \sum_{i=0}^{L^N-1} x(i, j) \cos \left(\frac{(2i + 1)u\pi}{2LN} \right) \right) \]

\[\cdot \cos \left(\frac{(2j + 1)v\pi}{2MN} \right). \]
Case of 2-D Signals

• block[16*16] → sub-block4*[8*8]
Experimental results
Experimental results

One block size of 8×8 to four sub-blocks size of 4×4

- proposed algorithm
 - 80 additions and 44 multiplications

- traditional algorithm
 - 96 additions and 128 multiplications
Conclusions

- Reducing the computing cost
- Improving the processing speed
- Extending from 1-D signals to 2-D signals
- Decomposing a block into sub-blocks directly in the DCT domain
~~The End~~

Thank you